Aerobiology 101

Dr. Linda Lee, DrPH, MBA, CIC UV Angel, Chief Science and Medical Officer

Presenter Introduction

UV Angel's technology is clinically based & back by science & engineering under the leadership of Dr. Linda Lee. Dr. Lee is a leading expert in environmental health science, with a specialty in the relationship of opportunistic environmental pathogens and disease transmission.

Dr. Linda D Lee DrPH, MBA, CIC

UV Angel, Chief Medical Affairs & Science Officer

- Chief Medical Affairs and Science Officer, UV Angel
- MD Anderson Cancer Center, AVP Admin Facilities and Campus Operations
- CH2M Hill, Global Practice Director focusing on complex environmental health, threat detection, mitigation and response and biological-chemical safety projects
- Founding member of Stericycle
- WM Healthcare Solutions, Director of Operations
- Faculty University of Texas Health and Science Center, School of Public Health
- ASHRAE Committee Member Environmental Health, 185 UVC chair 185.3 in room air treatment
- American Hospital Association Speaker
- Speaker SHEA, AIHce, IPAC-Canada, C. Diff Foundation, APIC, ASHRAE
- Awarded as a Top 25 Woman Leader in Health & Technology of 2022
- Published author AHA

Learning Objectives

Describe	Describe the behavior of airborne microbes.
Align	Align technology implementation with regulatory needs.
Contrast	Contrast episodic disinfection with continuous disinfection.
Evaluate	Evaluate technologies designed to reduce airborne contamination and their application to high-risk areas.

Contaminated Air: The Invisible Threat.

What do we do about it?

The Pandemic Reinforced Once Again:

- Air Matters
- Infection
 Prevention Vs
 Infection Response

Emerging Threats Especially, H5-N1

> The recent Covid-19 pandemic killing over **6,000,000 people** globally

Trifecta of respiratory diseases RSV Influenza Covid

CDC expecting up to 400,000 flu hospitalizations in 2022

Contaminated Air: What is The Invisible Threat?



People are the major source of contamination & transmission

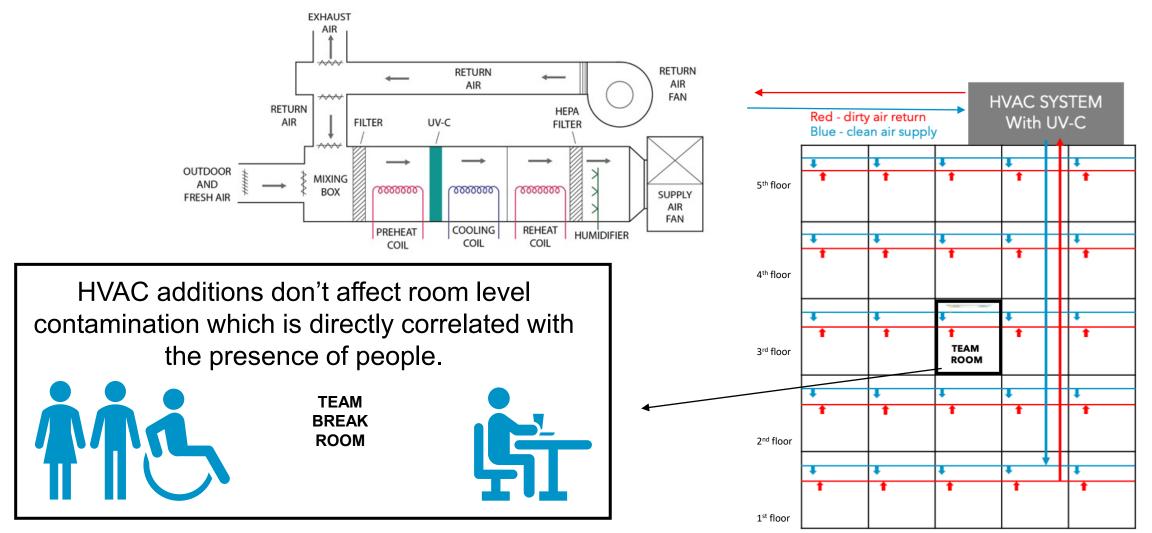
Many Indoor Air Quality (IAQ) and surface related problems

- Foot traffic sends 100,000 particles per step into the air
- Humans shed **37 million bacteria** per hour
- Study shows hospital room dirtiest 1.5 hrs after cleaning
- Pathogens can travel on air to surfaces ; resulting in direct and indirect transmission

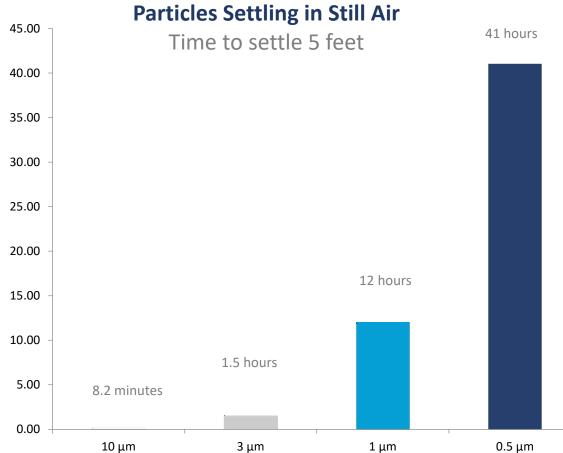


Snow Globe Affect

What Goes Up Must Come Down


Breaking the Chain of Airborne Transmission

How pathogens exit body: AGPs, coughing, sneezing, loud talking, signing, bleeding, open wounds


HVAC Purpose

HVAC system supplies air for entire building. Air travels from one source to reach all areas.

Remember – Conventional HVAC creates clean air going in, but it's the people who contaminate the space!

Particles float on air

Microbe	Туре	Size - µm
Paravovirus B19	Virus	0.022
Rhinovirus	Virus	0.023
Coxsakievirus	Virus	0.027
Norwalk virus	Virus	0.029
Rubella virus	Virus	0.061
Rotavirus	Virus	0.073
Reovirus	Virus	0.075
Adenovirus	Virus	0.079
Influenza A virus	Virus	0.098
Coronavirus (SARS)	Virus	0.110
Measles virus	Virus	0.158
Mumps virus	Virus	0.164
VZV	Virus	0.173
Mycoplasma pneumoniae	Bacteria	0.177
RSV	Virus	0.190
Parainfluenza virus	Virus	0.194
Bordetella pertussis	Bacteria	0.245
Haemophilus influenzae	Bacteria	0.285
Proteus mirabilis	Bacteria	0.494
Pseudomonas aeruginosa	Bacteria	0.494
Legionella pneumophila	Bacteria	0.520
Serratia marcescens	Bacteria	0.632
Mycobacterium tuberculosis	Bacteria	0.637
Klebsiella pneumoniae	Bacteria	0.671
Corynebacterium diphtheriae	Bacteria	0.698
Streptococcus pneumoniae	Bacteria	0.707
Neisseria meningitidis	Bacteria	0.775
Staphylococcus aureus	Bacteria	0.866
Staphylococcus epidermis	Bacteria	0.866
Streptococcus pyogenes	Bacteria	0.894
Clostridium perfringens spores	Bacteria	1.000
Mycobacterium avium	Bacteria	1.118
Nocardia asteroides	Bacteria	1.118
Acinetobacter	Bacteria	1.225
Enterobacter cloacae	Bacteria	1.414
Enterococcus	Bacteria	1.414
Haemophilus parainfluenzae	Bacteria	1.732
Clostridium difficile spores	Bacteria	2.000
Aspergillus spores	Fungi	3.354
Cryptococcus neofrmans spores	Fungi	4.899
Rhizopus spores	Fungi	6.928
Mucor spores	Fungi	7.071
Fusarium spores	Fungi	11.225
Blastomyces dermatitidis spores	Fungi	12.649

Regulatory

ASHRAE 170

2. SCOPE

2.1 The requirements in this standard apply to patient care areas, resident care areas, and related support areas within health care facilities.

2.2 This standard applies to new buildings, additions to existing buildings, and those alterations to existing buildings that are identified within this standard.

2.3 This standard considers chemical, physical, and biological contaminants that can affect the delivery of medical care to patients and residents; the convalescence of patients and resider ts; and the safety of patients, residents, health care workers, and visitors.

2.4 This standard establishes design requirements for temperature and humidity.

2.5 This standard establishes design requirements for odor control and asepsis.

2.6 This standard establishes design requirements for ventilation rates, including, but not limited to, outdoor air to serve health care facilities.

2.7 This standard does not establish comprehensive thermal comfort design requirements.

Requirement for:

*airborne infection isolation (AII):*the isolation of patients infected with organisms spread by airborne droplet nuclei less than form in diameter. For the purposes of this standard, the abbreviation "AII" refers to the room that provides isolation*Ir(formative Note:* See FGI [2018a, 2018b, 2018c], CDC [2003], and CDC [2005] in Informative Appendix E.)

airborne infection isolation (All) room: a room that is designed according to the requirements of this standard and that is intended to provide airborne infection isolation.

infection control risk assessment (ICRA):a determination of the potential risk of transmission of various infectious agents in the facility, a classification of those risks, and a list of required practices for mitigating those risks during construction or renovation.

STANDARD

ANSI/ASHRAE/ASHE Standard 170-2021 (Supernedes ANSI/ASHRAE/ASHE Standard 170-2017) Includes ANSI/ASHRAE/ASHE addenda listed in Appendix F

Ventilation of Health Care Facilities

See Agoendia F for opproval dates by the ASHBAE Standards Committee, the ASHBAE Board of Directors, the ASHE Board of Directors, and the American National Standards Institute.

This fundant is under continuous maintenance by a Stanting Standard Project Committee (BPC) for which the fundanth Constitute has established a documented program for regular publication of address or revisions, including procedures for timely, documented, common action on respects for change to any part of the floweded, best-utilized for how to advect a change can be fund on the AS-INA[®] whiles (https://www.advec.org/continuous-maintenance).

The lases edition of an ABHRAE Standard may be perchased from the ABHRAE vehicle (venecularisenerg) or from ADHRAE Constreme Service, 180 Technologi Parlowy NW, Peachtree Connex, GA.30092, E-mill orders@ahma.org, Fac: ASH-539-2128, Teleptone: 404-636-0450 (venthelide), or tell time 1-800-527-4723 (for orders in US and Canado, For reprint permission, price venecularises org/permissions.

© 2021 ASHMAE 85N 1041-2336

ASHRAE 170 (Example of Requirements)

Table 7-1 Design Parameters—Inpatient Spaces

ANSI/ASHRAE/ASHE Standard 170-2021

Function of Space (ee)	Pressure Relationship to Adjacent Areas (n)	Minimum Outdoor ach	Minimum Total ach	All Room Air Exhausted Directly to Outdoors (j)	Air Recirculated by Means of Room Units (a)	Unoccupied Turndown	Minimum Filter Efficiencies (cc)	Design Relative Humidity (k), %	Design Temperature (l), °F/°C
NURSING UNITS AND OTH & ER PATIENT CARE AREAS									
AII anteroom (FGI 2.1-2.4.2.3) (u)	(e)	NR	10	Yes	No	Yes	MERV-8	NR	NR
AII room (FGI 2.1-2.4.2) (u)	Negative	2	12	Yes	No	Yes	MERV-14	Max 60	70-75/21-24
Cesarean Delivery room (FGI 2.2-2.9.11.1) (m), (o)	Positive	4	20	NR	No	Yes	MERV-16	20-60	68-75/20-24
Combination AII/PE anteroom (FGI 2.2-2.2.4.5)	(e)	NR	10	Yes	No	No	HEPA	NR	NR
Combination AII/PE room (FGI 2.2-2.2.4.5)	Positive	2	12	Yes	No	No	HEPA	Max 60	70-75/21-24
Continued care nursery (FGI 2.2-2.10.3.2)	N/R	2	6	N/R	No	Yes	MERV-14	30-60	72-78/22-26
Critical care patient care station (FGI 2.2-2.6.2)	NR	2	6	NR	No	Yes	MERV-14	30-60	70-75/21-24
Emergency department exam/treatment room (FGI 2.2-3.1.2.6 & 2.2-3.1.3.6) (p)	NR	2	6	NR	NR	Yes (ff)	MERV-14	Max 60	70-75/21-24
Emergency department human decontamination (FGI 2.2-3.1.3.6[8])	Negative	2	12	Yes	No	Yes (ff)	MERV-14	NR	NR
Emergency department public waiting area (FGI 2.2-3.1.2.4 & 2.2-3.1.3.4)	Negative	2	12	Yes (q)	NR	Yes (ff)	MERV-8	Max 65	70-75/21-24
Emergency department trauma/resuscitation room (FGI 2.2-3.1.3.6[4]) (c)	Positive	3	15	NR	No	Yes	MERV-14	20-60	70-75/21-24
Emergency service triage area (FGI 2.2-3.1.3.3)	Negative	2	12	Yes (q)	NR	Yes (ff)	MERV-8	Max 60	70-75/21-24
Intermediate care patient room (FGI 2.2-2.5) (s)	NR	2	6	NR	NR	Yes	MERV-14	Max 60	70-75/21-24
Labor/delivery/recovery (LDR) (FGI 2.2-2.9.3) (s)	NR	2	6	NR	NR	Yes	MERV-14	Max 60	70-75/21-24
Labor/delivery/recovery/postpartum (LDRP) (FGI 2.2-2.9.3) (s)	NR	2	6	NR	NR	Yes	MERV-14	Max 60	70-75/21-24
Laser eye room (FGI Table T2.2-1)	Positive	3	15	NR	No	Yes	MERV-14	20-60	70-75/21-24
Neonatal intensive care (FGI 2.2-2.8)	Positive	2	6	NR	No	Yes	MERV-14	30-60	72-78/22-26
Newborn nursery (FGI 2.2-2.10.3.1)	NR	2	6	NR	No	Yes	MERV-14	30-60	72-78/22-26
Nourishment area or room (FGI 2.1-2.8.9)	NR	NR	2	NR	NR	Yes	MERV-8	NR	NR
Nursery workroom (FGI 2.2-2.10.8.5)	NR	2	6	NR	No	Yes	MERV-8	Max 60	72-78/22-26
Operating room (FGI 2.2-3.3.3) (m), (o)	Positive	4	20	NR	No	Yes	MERV-16 (hh)	20-60	68-75/20-24

Informative Notes: (1) NR = no requirement; (2) FGI paragraph numbers are shown in parentheses in the "Function of Space" column.

USP 797

USP 797 refers to chapter 797 "Pharmaceutical Compounding – Sterile Preparations" in the USP National Formulary. It is the first set of enforceable sterile compounding standards issued by the United States Pharmacopeia (USP).

It describes the guidelines, procedures and compliance requirements for compounding sterile preparations and sets the standards that apply to all settings in which sterile preparations are compounded.

USP applies to the compounding of both hazardous and non-hazardous drugs

Prevent Patient Harm From

- Microbial contamination
- Excessive bacterial endotoxins
- Variability in the intended strength of correct ingredients
- Unintended chemical and physical contaminants
- Ingredients of inappropriate quality

Clean Air Challenge

"Clean Air in Buildings Challenge" from the group: the CDC, White House, EPA, and DOE.

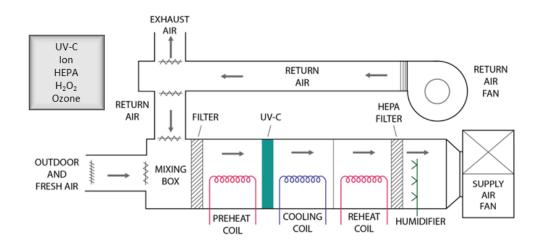
1. Optimize Fresh Air Ventilation

2. Enhance Air Filtration

3. UVGI

Beware of Emerging Technologies

CDC does not provide recommendations for, or against, any manufacturer or product. There are numerous technologies being heavily marketed to provide air cleaning during the ongoing COVID-19 pandemic. Common among these are ionization, dry hydrogen peroxide, and chemical fogging disinfection. Some products on the market include combinations of these technologies. These products generate ions, reactive oxidative species (ROS, which are marketed using many names), or chemicals into the air as part of the air cleaning process. People in spaces treated by these products are also exposed to these ions, ROS, or chemicals.


While variations of these technologies have been around for decades, relative to other air cleaning or disinfection methods, they have a less-documented track record when it comes to cleaning/disinfecting large and fast volumes of moving air within heating, ventilation, and air conditioning (HVAC) systems or even inside individual rooms. This does not necessarily imply the technologies do not work as advertised. However, in the absence of an established body of peer-reviewed evidence showing proven efficacy and safety under as-used conditions, the technologies are still considered by many to be "emerging."

As with all emerging technologies, consumers are encouraged to exercise caution and to do their homework. Registration alone, with national or local authorities, does not always imply product efficacy or safety. Consumers should research the technology, attempting to match any specific claims against the intended use of the product. Consumers should request testing data that quantitively demonstrates a clear protective benefit and occupant safety under

ASHRAE Standard 62.1

"ASHRAE has determined that HVAC ventilation rates in commercial buildings, do not address transmission of airborne viruses, bacteria, and other infectious contagions"

Building HVAC systems supply air for entire building and air travels from one source to reach ALL areas. The systems are not designed to destroy pathogens at the occupied room level

Engineering Controls Episodic vs Continuous

Engineered Source - Control

Engineering Controls – by design protect people by automatically eliminating hazards or reduce exposure to hazards, without human intervention. At UV Angel we focus on the development of intelligent automated engineered-controls for infection prevention & control

The most effective protection measures are listed in the table to the right (from most effective to least effective). In most cases, a combination of control measures will be necessary to protect workers from exposure to SARS-CoV-2. Engineering controls reduce exposure to hazards without relying on worker behavior and can be the most cost-effective solution to implement.

CDC

CENTERS FOR DISEASE CONTROL AND PREVENTION Recommends using ultraviolet germicidal irradiation (UVGI) as a supplement to help inactivate the virus.

Strongly recommend; good evidence – Upper-room UVGI as a supplement to supply airflow

LEAST EFFECTIVE

MOST EFFECTIVE

Engineering Controls Active, Upper Room UVGI Administrative Controls

Personal Protective Equipment (PPE)

Important Decision Criteria

Environmental Mitigation Approach: ADDITIVE vs SUBTRACTIVE

> Upper Room Applications: ACTIVE vs PASSIVE

UV-C Wavelengths for Occupied Spaces:

SHIELDED UVC 254 vs UNSHIELDED UVC 222

Episodic Routine Controls – Use a Layered Approach – Continuous Automated

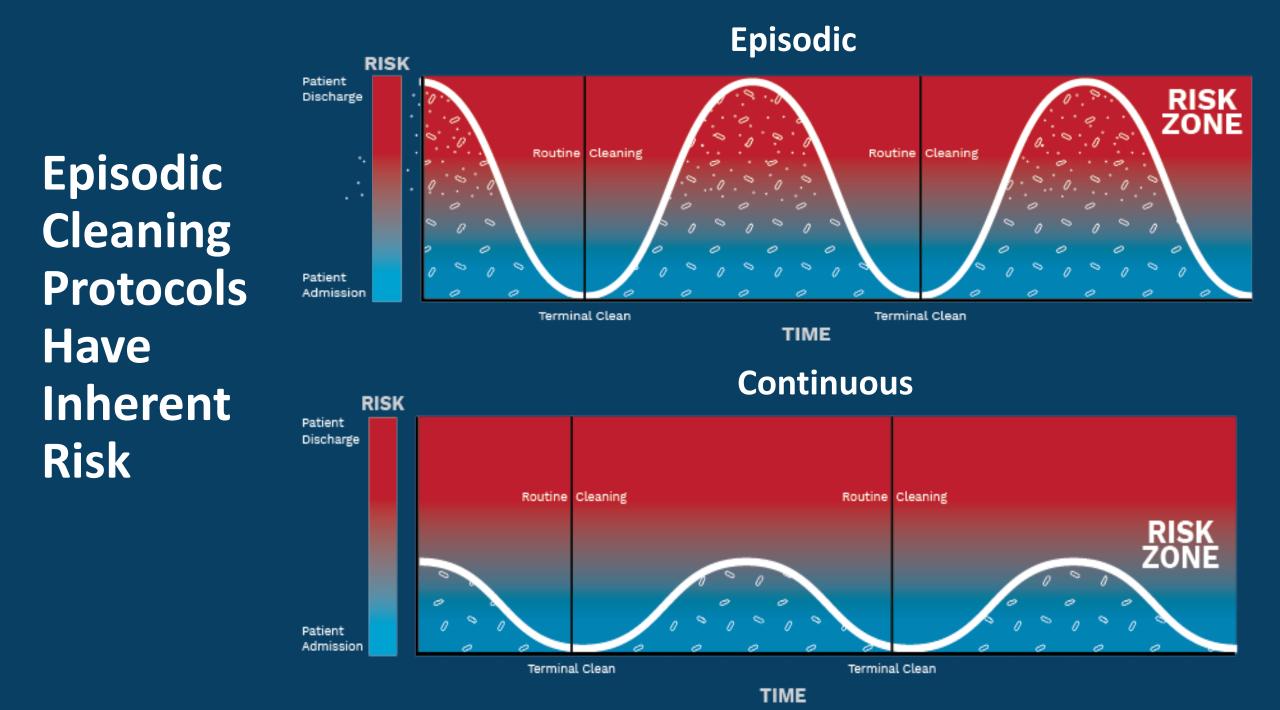
Cleaning typically happens when people are not present...

Yet people are the major source of disease transmission and contamination...

The room environment gets contaminated again after the people re-occupy the space...

EPISODIC CLEANING – EVEN WITH BEST INTENT ERRORS EXIST

The laboratory vs. the real world + continuous treatment


Laboratory Versus Real-Word Settings

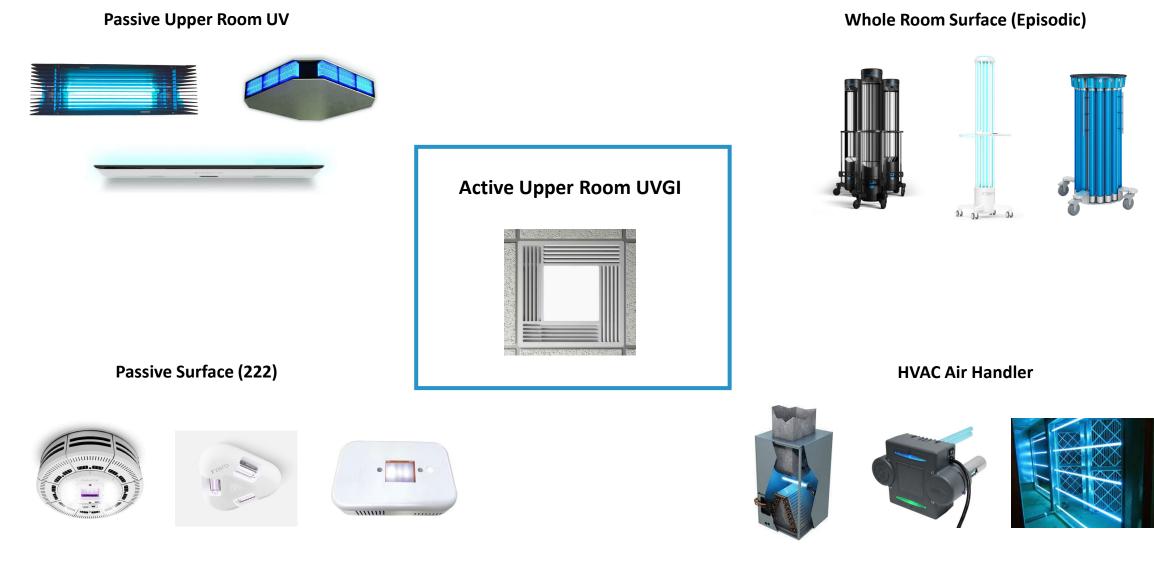
"A person typically sheds some **37 million bacteria** into the surrounding air or onto surfaces touched."

Why should you be concerned

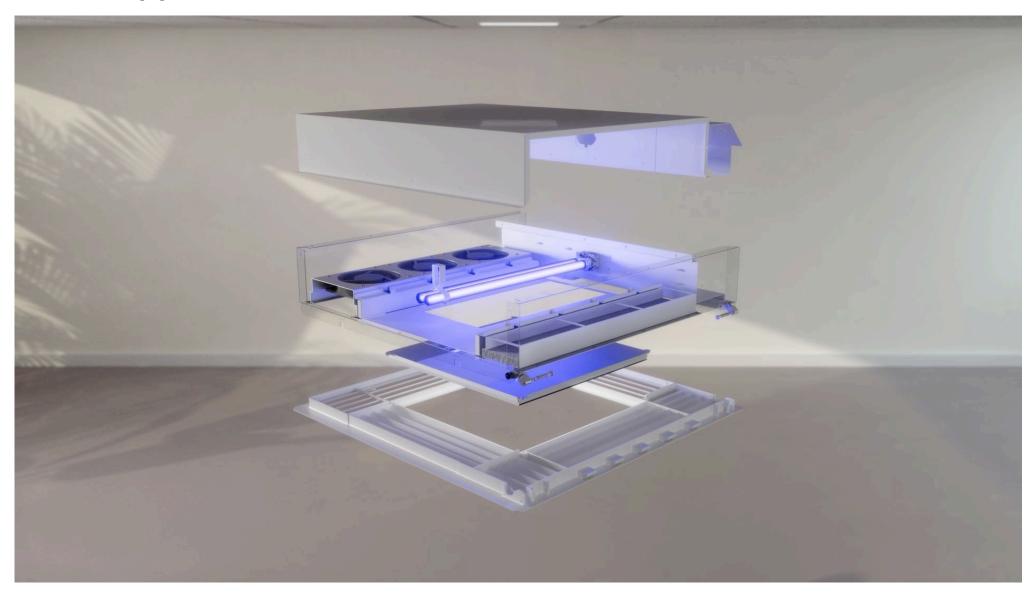
- Often good to visualize this to truly understand but essentially if I have 10,000 E.coli after using a product there should be roughly 1 left.
- Now Given the fact that E.coli has a doubling time (1 -> 2, 2->4) of 20 minutes. That 1
 E.coli that survived that initial volley of germicidal will become 2.1 million in 7 hours. After just one more hour it becomes 16.8 million strong.¹
- We apply our device that's "99.99%" effective and now we've brought the load down from 2.2 billion to 220,000 colony forming units.
- So, while 99.99% is very good it's important understand it's application in microbiology as the 99.xx% term is thrown around quite a bit.

What Air and Surface Environmental Sampling Tells Us

THE INVISIBLE THREAT

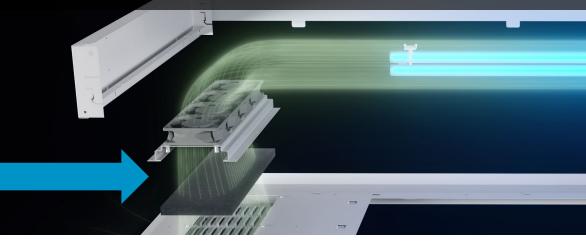


CONTAMINATED AIR



What to do about it? Active Upper-Room UVGI Technology

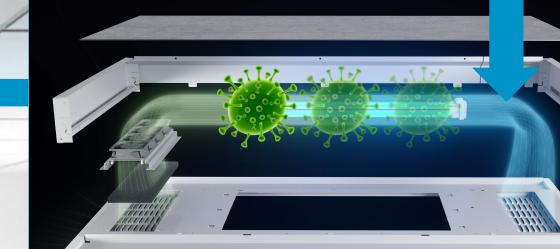
UVGI Disinfection Products



Active Upper Room UVGI

VIRUSES, BACTERIA, FUNGI/MOLD (PATHOGENS) ARE CONTINUOULSY 24X7-365 DRAWN IN BY ACTIVE FAN TECHNOLOGY THROUGH A FILTER TO THE UVGI LAMP

HOW IT WORKS


2

CLEAN, DISENFECTED AIR IS GENTLY RETURNED BACK TO THE ROOM

3 PATHOGENS ARE NEUTRALIZED EVERY SECONDS AS THEY CROSS UVGI LAMP

84,000 TIMES A DAYHIGH-INTENSITY UVGI IS DISENFECTING ROOM AIR FROM VIRUSES, BACTERIA, FUNGI/MOLD

How to Evaluate Technologies

Good Science Should Drive Clarity

The Importance of Technology Due Diligence

- 1. Review results that should include *independent third-party laboratory studies*
- 2. Review *company and user testimonial testing documentation of use in real-world* applications
- 3. Review results that should include *peer-reviewed published studies* that show the effectiveness of actual use cases

Get The Facts – Step 1

Test conclusively support that Active Upper Room UVGI treats bacteria fungus and viruses in the air, including:

Gram negative and gram-positive bacteria, fungal pathogens and viral surrogates and SARS CoV2. Active Upper Room UVGI results show elimination rates up to 99.9%.

Company Information and Additional Information

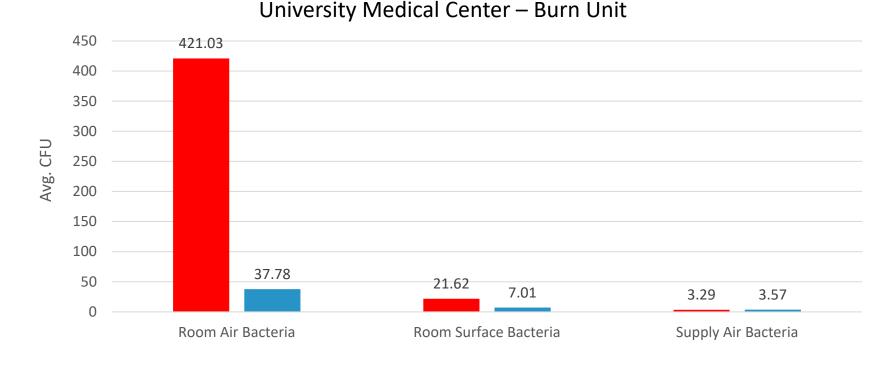
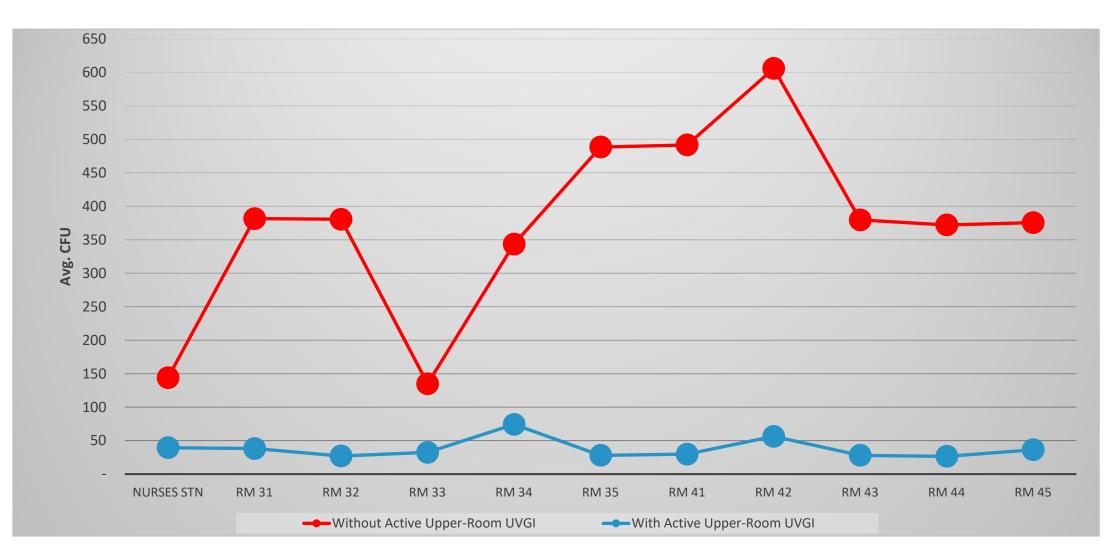

Table 4: Combined UV + Filter Removal Rates					
Microbe	Туре	Size	Filter	UV Rate	Total
		μm	%	%	%
Acinetobacter	Bacteria	1.225	21	100	100.00
Adenovirus	Virus	0.079	9	100	100.00
Aeromonas	Bacteria	2.098	35	100	100.00
Aspergillus	Fungi	3.354	45	93	96.30
Bacillus anthracis	Bacteria	1.118	19	61	68.20
Bacteroides fragilis	Bacteria	3.162	44	100	100.00
Blastomyces dermatitidis	Fungi	12.649	50	99	99.65
Bordetella pertussis	Bacteria	0.245	4	100	100.00
Burkholderia cenocepacia	Bacteria	0.707	11	100	100.00
Burkholderia mallei	Bacteria	0.674	10	100	100.00
Burkholderia pseudomallei	Bacteria	0.494	7	100	100.00
Candida albicans	Fungi	4.899	49	79	89.19
Candia auris	Fungi	4.899	49	75	87.31
Chlamydia pneumoniae	Bacteria	0.548	8	100	100.00
Chlamydophila psittaci	Bacteria	0.283	4	100	100.00
Cladosporium	Fungi	8.062	50	98	98.75
Clostridium botulinum	Bacteria	1.975	33	100	100.00
Clostridium difficile	Bacteria	2	34	100	100.00
Clostridium perfringens	Bacteria	5	49	100	100.00
Coronavirus (Wuhan)	Virus	0.11	6	100	100.00
Corynebacterium diphtheriae	Bacteria	0.698	10	100	100.00
Coxsackievirus	Virus	0.027	19	100	100.00
Cryptococcus neoformans	Fungi	4.899	49	99	99.67
Curvularia lunata	Fungi	11.619	50	71	85.57
Ebola virus	Virus	0.09	8	100	100.00
Echovirus	Virus	0.024	20	100	99.89
E. coli	Virus	0.5	7	100	100.00
Enterobacter cloacae	Bacteria	1.414	24	100	100.00
Enterococcus	Bacteria	1.414	24	100	100.00
Enterococcus faecalis	Bacteria	0.707	11	100	100.00
Francisella tularensis	Bacteria	0.2	4	91	91.49
Fusarium	Fungi	11.225	50	92	96.23
Haemophilus influenzae	Bacteria	0.285	4	100	100.00
Haemophilus parainfluenzae	Bacteria	1.732	30	100	99.99
Hantaan virus	Virus	0.096	7	100	100.00
Helicobacter pylori	Bacteria	2.1	35	100	100.00
Histoplasma capsulatum	Fungi	2.236	36	99	99.56
Influenza A virus	Virus	0.098	7	100	100.00
	Virus	0.122	6	100	100.00
Klebsiella pneumoniae	Bacteria	0.671	10	100	100.00
Lassa virus	Virus	0.122	6	100	100.00
LCV	Virus	0.087	8	100	100.00
Legionella pneumophila	Bacteria	0.52	7	100	100.00
Listeria monocytogenes	Bacteria	0.32	11	99	98.98

Table 4: Combined UV + Filter Removal Rates Microbe Type Size Filter UV Rate Tota						
inici obc	Type	μm	%	%	%	
Marburg virus	Virus	0.039	15	100	100.00	
Measles virus	Virus	0.158	5	100	100.00	
MERS virus	Virus	0.11	6	89	90	
Mucor	Fungi	7.071	50	95	98	
Mumps virus	Virus	0.164	5	100	100	
Mycobacterium avium	Bacteria	1.118	19	100	100	
Mycobacterium kansasii	Bacteria	1.118	19	100	100	
Mycobacterium tuberculosis	Bacteria	0.637	9	100	100	
Mycoplasma pneumoniae	Bacteria	0.177	5	100	100	
Neisseria meningitidis	Bacteria	0.775	12	100	100	
Nocardia asteroides	Bacteria	1.118	12	100	100	
Norwalk virus	Virus	0.029	18	97	98	
Parainfluenza virus	Virus	0.194	4	100	100	
Parvovirus B19	Virus	0.022	21	100	100	
Penicillium	Fungi	3.262	44	60	78	
Proteus mirabilis	Bacteria	0.494	7	100	100	
Pseudomonas aeruginosa	Bacteria	0.494	7	100	100	
Reovirus	Virus	0.075	9	99	99	
RSV	Virus	0.19	5	100	100	
Rhinovirus	Virus	0.023	21	99	99	
Rhizopus	Fungi	6.928	50	93	96	
Rickettsia prowazeki	Bacteria	0.6	9	100	100	
Rotavirus	Virus	0.073	9	100	100	
Rubella virus	Virus	0.061	11	67	71	
Salmonella typhi	Bacteria	0.806	13	100	100	
SARS virus	Virus	0.11	6	100	100	
Serratia marcescens	Bacteria	0.632	9	100	100	
Stachybotrys chartarum	Fungi	5.623	49	12	55	
Staphylococcus aureus	Bacteria	0.866	14	100	100	
Staphylococcus epidermis	Bacteria	0.866	14	100	100	
Streptococcus pneumoniae	Bacteria	0.707	11	77	80	
Streptococcus pyogenes	Bacteria	0.894	14	100	100	
Trichophyton	Fungi	4.899	49	71	85	
Ustilago	Fungi	5.916	50	46	73	
VZV	Virus	0.173	5	100	100	
Yersinia pestis	Virus	0.707	11	100	100	

Active Upper Room UVGI – Peer Reviewed Healthcare Clinical Studies

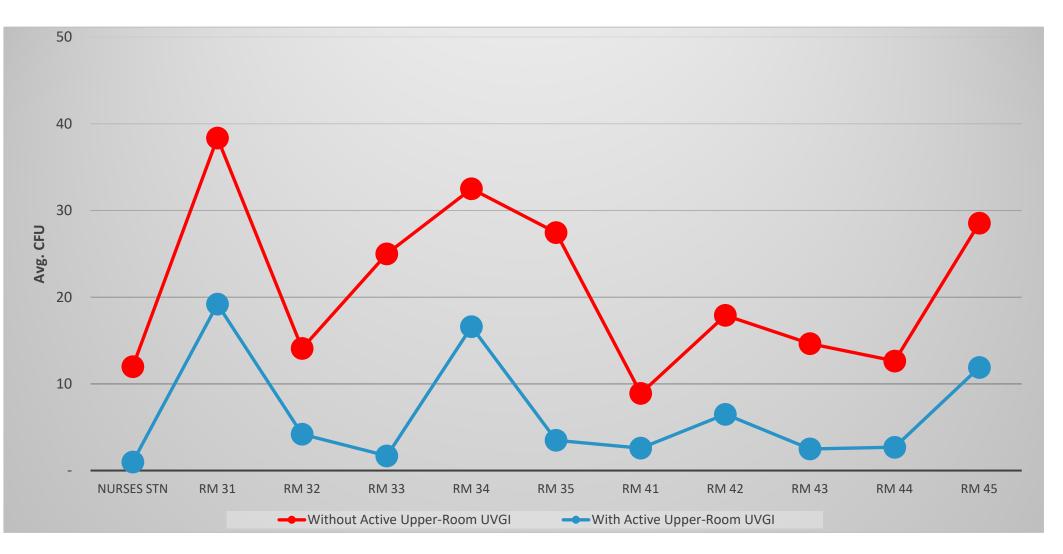
Sample		Pre CFU	Post CFU	% Decrease	p-value
1. Acute Care Hospital, KY					
	Bacteria Air	175	102	42%	0.035
	Infection Rate	9	4	60%	0.001
2. Nursing Home, TN					
Ventilator Unit	Bacteria Air	234	114	51%	0.022
Ventilator Unit	Infection Rate	17.5	12.5	28%	
3. Hospital Pharmacy, TN					
Compounding Room	Fungus Air	3.25	0	100%	0.351
Compounding Room	Bacteria Air	1.5	0.125	92 %	0.014
Total Pharmacy	Fungus Air	8.3	1.82	78%	<0.001
Total Pharmacy	Bacteria Air	56.72	21.79	62%	<0.001
4. Acute Care Hospitals, MA and NV					
ICU	Bacteria Air	167	37	79%	0.0305
OR Breakroom	Bacteria Air	472	92	81%	0.0264
6 bed Psych Unit	Bacteria Air	439	88	80%	0.0234
5. Childrens' Hospital, TX					
Patient Room	Bacteria Air	599	55	91%	0.0002

Pre & Post Testing Study Summary

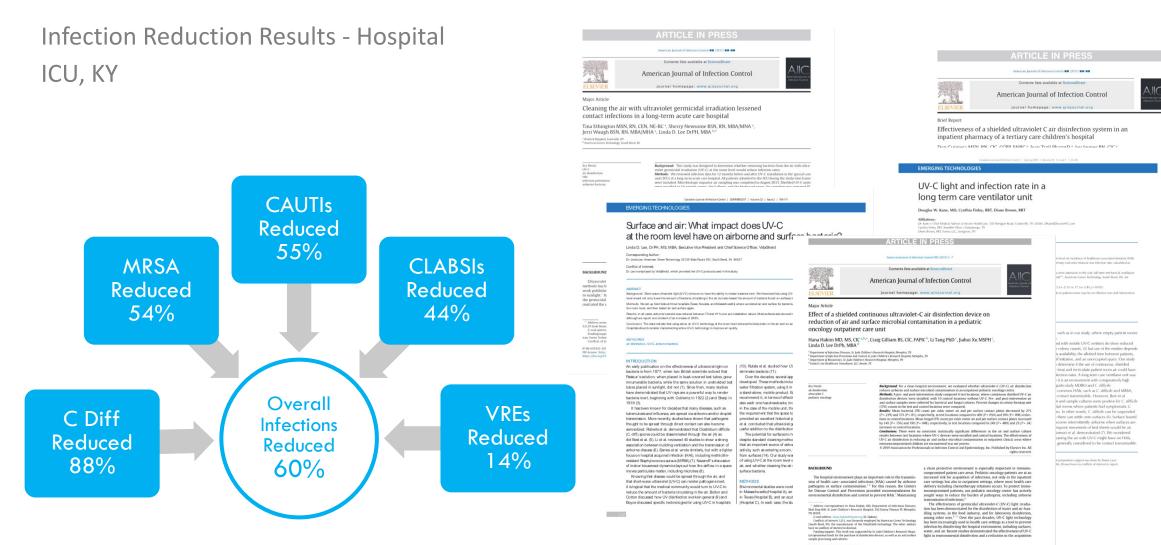

■ Without Active Upper-Room UVGI ■ With Active Upper-Room UVGI

91% overall reduction of Room Air Bacteria.68% overall reduction of Room Surface Bacteria.Virtually no change in bacteria counts in air supplied to the room.

*The Air, Surface and Supply Bacteria is reported in CFU's.


Pre & Post Testing Study Summary

Average Room Air Bacteria CFU counts – comparing pre and post installation sampling


Pre & Post Testing Study Summary

Average Room Surface Bacteria CFU counts – comparing pre and post installation sampling

AIR: PUBLISHED DATA

Study Departments – Pharmacy, OR, ICU, Nursing Home VU, Outpatient Clinic

Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserves

Learning Objectives

Describe	Describe the behavior of airborne microbes.
Align	Align technology implementation with regulatory needs.
Contrast	Contrast episodic disinfection with continuous disinfection.
Evaluate	Evaluate technologies designed to reduce airborne contamination and their application to high-risk areas.

The worlds most advanced Active, Upper Room UVGI Technology

Contact Information Matt Crowe, Exec Director mcrowe@uvangel.com

QUESTION & ANSWER