Peripheral IVs: Infection Risks, Evidence and Patient Satisfaction

Michelle DeVries, MPH CIC
Senior Infection Control Officer
Methodist Hospitals
Gary, Indiana
mdevries@methodisthospitals.org
219/738-5602
• Michelle DeVries is a paid consultant of Becton-Dickinson.

• This promotional educational activity is brought to you by Becton-Dickinson, Inc.
Objectives

- Review the current literature surrounding risk of infection with peripheral lines.
- Consider the latest evidence based guidelines regarding short peripheral catheters.
- Review the main considerations when adopting a policy of extending dwell time with short peripheral catheters.
Thinking about Peripheral IVs

- Most commonly used invasive device in hospitals
 - 60-90% of patients (in the US) have an IV placed during their hospitalization

- HOWEVER...
 - High failure rate reported
 - Mean across studies is 46%
 - Outcome measures rarely monitored or reported

<table>
<thead>
<tr>
<th>Device</th>
<th>All studies</th>
<th>Studies requiring microbial concordance between catheter and blood cultures</th>
<th>Studies requiring microbial concordance and all devices cultured</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of studies</td>
<td>IVD-related BSIs per 1000 IVD-days (95% CI)</td>
<td>No. of studies</td>
</tr>
<tr>
<td>Peripheral IV catheters</td>
<td>10</td>
<td>0.5 (0.2-0.7)</td>
<td>9</td>
</tr>
<tr>
<td>Midline catheters</td>
<td>3</td>
<td>0.2 (0.0-0.5)</td>
<td>2</td>
</tr>
<tr>
<td>Arterial catheters for hemodynamic monitoring</td>
<td>14</td>
<td>1.7 (1.2-2.3)</td>
<td>11</td>
</tr>
<tr>
<td>Peripherally inserted central catheters</td>
<td>15</td>
<td>1.0 (0.8-1.2)</td>
<td>5</td>
</tr>
<tr>
<td>Noncuffed central venous catheters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonmedicated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nontunneled</td>
<td>79</td>
<td>2.7 (2.6-2.9)</td>
<td>63</td>
</tr>
<tr>
<td>Tunneled</td>
<td>9</td>
<td>1.7 (1.2-2.3)</td>
<td>7</td>
</tr>
<tr>
<td>Medicated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorhexidine-silver-sulfadiazine</td>
<td>18</td>
<td>1.6 (1.3-2.0)</td>
<td>16</td>
</tr>
<tr>
<td>Minocycline-rifampin</td>
<td>3</td>
<td>1.2 (0.3-2.1)</td>
<td>3</td>
</tr>
<tr>
<td>Pulmonary artery catheters</td>
<td>13</td>
<td>3.7 (2.4-5.0)</td>
<td>11</td>
</tr>
<tr>
<td>Noncuffed, nontunneled hemodialysis catheters</td>
<td>16</td>
<td>4.8 (4.2-5.3)</td>
<td>11</td>
</tr>
</tbody>
</table>

*BSI = bloodstream infection; CI = confidence interval; IV = intravenous; IVD = intravascular device.
State HAI reporting in Pennsylvania

- Hospitals are required to report ALL laboratory confirmed bloodstream infections (LCBI)
 - Not just CLABSI

- In 2011 there were 2479 LCBI reported to the state
 - 1540 were CLABSI
 - Which means 939 (38%) did not have a central line in place
 - How many of these may be related to peripheral lines?
 - What else could be contributing?
 - Several studies have shown around 20% of all LCBI may be from PVC

- The 2014 HAI report disclosed:
 - 2163 bloodstream infections
 - 1140 CLABSI
 - This leaves 1023 with no central line (47%)

Peripheral Venous Catheter-Related *Staphylococcus aureus* Bacteremia

- 24 *S. aureus* bacteremias
- 12% of all device related *S. aureus* bacteremias were caused by PVCs
- Average treatment in this study was 19 days
- Serious complications noted:
 - Two patient deaths and one transfer to hospice
 - Two I&D of local site
 - One DVT from PICC line placed to treat PVC-BSI
 - Ten events that would be reportable in to CMS under current regulations
 - 8 MRSA bacteremias
 - 2 C. diff

Risk Factors

- Antecubital fossa (67%)
- Placement outside of the hospital (16%)
 - 2 from outside facilities
 - 2 field starts
- Placement in Emergency Room (67%)
- Longer duration of catheterization
 - 46% had duration greater than 3 days

More to the *S. aureus* story...

- Further analysis of the Pennsylvania data
 - Included all non-central line related BSI from 2011 and 2012
 - Based on pathogen analysis and infection onset, they speculate that “it is likely that the majority of acute care primary BSIs in Pennsylvania are due to PVCRI”
 - Additionally, they use *S. aureus* as an indicator for PVCRI and note that there is a substantial spike after 72 hours

Looking at bundled success

- 8 year project with primary goal to reduce phlebitis and bacteremia related to peripheral lines
- 1631 patients with 2325 short catheters were followed
- PIV bundle
 - Healthcare worker education and training
 - Withdrawal of unnecessary catheters
 - Any catheter not in use or more than 24 hours was systematically removed
 - Catheter exchange policy
 - Withdrawal of catheters at early stages of phlebitis
 - Use of scales as measuring tool
 - Repeated period prevalence of PVC adverse events

Results

- 59 catheter related BSI were found during the study
 - 19% (11 infections) were PIV related

- For *S. aureus* bacteremias (32 infections)
 - 28% were PIV related
 - 81% of all the PIV infections were caused by *S. aureus*

- Intervention outcomes
 - 48% decrease in phlebitis
 - Significant incidence reduction in PIV bacteremia as well as *S. aureus* bloodstream infections was also seen
Case study of 75 year old man with history of CAD and CHF admitted for CHF exacerbation.

After PIV in for four days, RN requested orders to leave IV in an additional day or two because placement (given edema) would be difficult.

On day 6 patient developed erythema at the IV site and later that day developed fever and chills.
- Blood cultures grew MRSA.

Subsequently, patient complained of back pain. MRI of the spine revealed epidural abscess.
- Aspiration grew MRSA

Treatment required 6 weeks of antibiotics and is estimated to have cost hundreds of thousands of dollars.
The CDC Recommendations

- There is no need to replace peripheral catheters more frequently than every 72-96 hours to reduce risk of infection and phlebitis in adults. Category 1B

- No recommendation is made regarding replacement of peripheral catheters in adults only when clinically indicated. Unresolved issue

- Replace peripheral catheters in children only when clinically indicated. Category 1B

- Some studies have suggested that planned removal at 72 hours vs. removing as needed resulted in similar rates of phlebitis and catheter failure. However, these studies did not address the issue of CRBSI, and the risk of CRBSIs with this strategy is not well studied.

INS Standards 2016

- Remove the short peripheral catheter if it is no longer included in the plan of care or has not been used for 24 hours of more.

- Remove short peripheral and midline catheters in pediatric and adult patients when clinically indicated, based on findings from site assessment and/or clinical signs and symptoms of systemic complications.

• Use the venous site most likely to last the full length of the prescribed therapy, using the forearm to increase dwell time, decrease pain during dwell time, promote self-care and prevention accidental removal and occlusions.

• Use a new pair of disposable, nonsterile gloves in conjunction with a “no-touch” technique for peripheral IV insertion, meaning that the insertion site is not palpated after skin antisepsis.

• Dressing changes are performed... every 5-7 days and immediately if the dressing integrity becomes damp, loosened, or visibly soiled, or if moisture, drained or blood are present under the dressing.

• Consider increased attention to aseptic technique, including strict attention to skin antisepsis and the use of sterile gloves, when placing short peripheral catheters... contamination of nonsterile gloves is documented.

• Consider monitoring bloodstream infection rates for peripheral catheters, or vascular catheter associated infections (peripheral) regularly.

• Make no more than 2 attempts at short peripheral intravenous access per clinician, and limit total attempts to no more than 4.

• Consider the use of maximal sterile barrier precautions with midline catheter insertion.

• For peripheral catheters, consider two options for catheter stabilization: (1) in integrated stabilization feature on the catheter hub combined with a bordered polyurethane securement dressing or (2) a standard round hub peripheral catheter in combination with an adhesive ESD.

Bundling for success

- **Insertion:**
 - CHG skin prep
 - Sterile gloves if repalpating the site
 - Alcohol caps for intraluminal protection
 - Chlorhexidine impregnated sponge dressing for extraluminal protection
 - Updated catheter - integrated extension set
 - Integrated securement dressing
 - Neutral connectors

- **Maintenance:**
 - Careful assessment - check the patient, not the box
 - Remove when clinically indicated, with dressing change at 7 days (or sooner if dressing compromised)
 - Re-prep when redressing the site

- Ongoing surveillance of process and outcomes

- Review any infections with floor staff in “real time” to discuss missed opportunities for prevention

What does the data show?

After 12 months of protected clinical indication policy:

- 38% statistically significant reduction in primary bacteremia (sustained at 24 months)
- 19% reduction in PIV associated bloodstream infections (with 6% further reduction at 24 months)
- 48% decrease in IV start kits
- 75% decrease in ICU CLABSI (sustained at 24 months)
- 24% increase in patient satisfaction scores for patients hospitalized at least 5 days
Does it really work?

- 18 months following clinical indication launch 35% of lines were remaining in place 5 days or greater
- Average dwell time is beyond 4.2 days
What about midlines?

- In an effort to reduce CLABSI incidence many hospitals are looking increasingly to midline catheters as part of their solution.

- Midlines are considered peripheral catheters per INS standards and CDC definitions regarding tip termination.

- How are you protecting your patients with these lines?
 - Insertion? INS says consider maximum sterile barriers.
 - Protection? These lines may dwell for up to 29 days. INS lists clinical indication as the appropriate choice for these devices as well.

- How are you measuring success?
 - Decrease in central line days?
 - Decrease in CLABSI?
 - Material costs and time savings?
 - Incidence of Midline associated bloodstream infection?

Infusion Therapy Standards of Practice, Journal of Infusion Nursing. 2016, V39 (1S)

It’s not just about infections...

- Fewer sticks by reducing arbitrary restarts can impact:
 - Patient satisfaction
 - Vessel preservation
 - Supply costs
 - Nursing time

- Expanding interventions beyond just central lines *may* also benefit CLABSI rates

- Anyway you look at it, making an investment in safely implementing an approach to address peripheral IVs there is much to be gained
Planning for safety

- Engaging all involved disciplines in the development of a new policy for extending dwell time
- Addressing any product changes to assist with objectives of increased dwell time
- Reviewing staff training/competencies
- Understanding measures of success
 - Process measures
 - Outcome measures
Knowing your own data...

- How do you know it’s not a problem if you aren’t looking?
- NHSN definitions are for laboratory confirmed bloodstream infections
 - “Become” Central line associated (CLABSI) by the presence of a central line
 - Same reasoning can be applied BSI with no source other than Peripheral venous access
- Process data is as important as outcome data
 - Take advantage of value added offerings from vendors to help leverage your data
- Consider product and practice interventions for all intravascular devices, not just central lines.